

Application-Specific Integrated Circuits

By Michael John Sebastian Smith

[Download now](#)

[Read Online](#) ➔

Application-Specific Integrated Circuits By Michael John Sebastian Smith

This comprehensive book on application-specific integrated circuits (ASICs) describes the latest methods in VLSI-systems design. ASIC design, using commercial tools and predesigned cell libraries, is the fastest, most cost-effective, and least error-prone method of IC design. As a consequence, ASICs and ASIC-design methods have become increasingly popular in industry for a wide range of applications. The book covers both semicustom and programmable ASIC types. After describing the fundamentals of digital logic design and the physical features of each ASIC type, the book turns to ASIC logic design-design entry, logic synthesis, simulation, and test-and then to physical design-partitioning, floorplanning, placement, and routing. You will find here, in practical, well-explained detail, everything you need to know to understand the design of an ASIC, and everything you must do to begin and to complete your own design.

 [Download Application-Specific Integrated Circuits ...pdf](#)

 [Read Online Application-Specific Integrated Circuits ...pdf](#)

Application-Specific Integrated Circuits

By Michael John Sebastian Smith

Application-Specific Integrated Circuits By Michael John Sebastian Smith

This comprehensive book on application-specific integrated circuits (ASICs) describes the latest methods in VLSI-systems design. ASIC design, using commercial tools and predesigned cell libraries, is the fastest, most cost-effective, and least error-prone method of IC design. As a consequence, ASICs and ASIC-design methods have become increasingly popular in industry for a wide range of applications. The book covers both semicustom and programmable ASIC types. After describing the fundamentals of digital logic design and the physical features of each ASIC type, the book turns to ASIC logic design-design entry, logic synthesis, simulation, and test-and then to physical design-partitioning, floorplanning, placement, and routing. You will find here, in practical, well-explained detail, everything you need to know to understand the design of an ASIC, and everything you must do to begin and to complete your own design.

Application-Specific Integrated Circuits By Michael John Sebastian Smith Bibliography

- Sales Rank: #539073 in Books
- Published on: 1997-06-20
- Ingredients: Example Ingredients
- Original language: English
- Number of items: 1
- Dimensions: 9.64" h x 1.67" w x 7.80" l, 3.97 pounds
- Binding: Hardcover
- 1040 pages

 [Download Application-Specific Integrated Circuits ...pdf](#)

 [Read Online Application-Specific Integrated Circuits ...pdf](#)

Download and Read Free Online Application-Specific Integrated Circuits By Michael John Sebastian Smith

Editorial Review

From the Inside Flap

In 1988 I began to teach full-custom VLSI design. In 1990 I started teaching ASIC design instead, because my students found it easier to get jobs in this field. I wrote a proposal to The National Science Foundation (NSF) to use electronic distribution of teaching material. Dick Lyon helped me with preparing the first few CD-ROMs at Apple, but Chuck Seitz, Lynn Conway, and others explained to me that I was facing a problem that Carver Mead and Lynn had experienced in trying to get the concept of multichip wafers adopted. It was not until the publication of the Mead-Conway text that people accepted this new idea. It was suggested that I must generate interest using a conventional format before people would use my material in a new one (CD-ROM or the Internet). In 1992 I stopped writing papers and began writing this book-a result of my experiments in computer-based education. I have nearly finished this book twice. The first time was a copy of my notes. The second time was just before the second edition of Weste and Eshragian was published-a hard act to follow. In order to finish in 1997 I had to stop updating and including new ideas and material and now this book consists of three parts: Chapters 1-8 are an introduction to ASICs, 9-14 cover ASIC logical design, and 15-17 cover the physical design of ASICs.

The book is intended for a wide audience. It may be used in an undergraduate or graduate course. It is also intended for those in industry who are involved with ASICs. Another function of this book is an "ASIC Encyclopedia," and therefore I have kept the background material needed to a minimum. The book makes extensive use of industrial tools and examples. The examples in Chapters 2 and 3 use tools and libraries from MicroSim (PSpice), Meta Software (HSPICE), Compass Design Automation (standard-cell and gate-array libraries), and Tanner Research (L-Edit). The programmable ASIC design examples in Chapter 4-8 use tools from Compass, Synopsys, Actel, Altera, and Xilinx. The examples in Chapter 9 (covering low-level design entry) used tools from Exemplar, MINC, AMD, UC Berkeley, Compass, Capilano, Mentor Graphics Corporation, and Cadence Design Automation. The VHDL examples in Chapter 10 were checked using QuickVHDL from Mentor, V-System Plus from Model Technology, and Scout from Compass. The Verilog examples in Chapter 11 were checked using Verilog-XL from Cadence, V-System Plus, and VeriWell from Wellspring Solutions. The logic synthesis examples in Chapter 12 were checked with the ASIC Synthesizer product family from Compass and tools from Mentor, Synopsys, and UC Berkeley. The simulation examples in Chapter 13 were checked with QuickVHDL, V-System/Plus, PSpice, Verilog-XL, DesignWorks from Capilano Computing, CompassSim, QSim, MixSim, and HSPICE. The test examples in Chapter 14 were checked using test software from Compass, Cadence, Mentor, Synopsys and Capilano's DesignWorks. The physical design examples in Chapters 15-17 were generated and tested using Preview, Gate Ensemble, and Cell Ensemble (Cadence) as well as ChipPlanner, ChipCompiler, and PathFinder (Compass). All these tools are installed at the University of Hawaii.

I wrote the text using FrameMaker. This allows me to project the text and figures using an LCD screen and an overhead projector. I used a succession of Apple Macintosh computers: a PowerBook 145, a 520, and lastly a 3400 with 144 MB of RAM, which made it possible for me to create updates to the index in just under one minute. Equations are "live" in FrameMaker. Thus, can be updated in a lecture and the new result displayed. The circuit layouts are color EPS files with enhanced B&W PICT previews created using L-Edit from Tanner Research. All of the Verilog and VHDL code examples, compiler and simulation input/output,

and the layout CIF that were used in the final version are included as conditional (hidden) text in the FrameMaker document, which is approximately 200 MB and just over 6,000 pages (my original source material spans fourteen 560 MB optical disks). Software can operate on the hidden text, allowing, for example, a choice of simulators to run the HDL code live in class. I converted draft versions of the VHDL and Verilog LRM and related standards to FrameMaker and built hypertext links to my text, but copyright problems will have to be solved before this type of material may be published. I drew all the figures using FreeHand. They are "layered" allowing complex drawings to be built-up slowly or animated by turning layers on or off. This is difficult to utilize in book form, but can be done live in the classroom.

A course based on FPGAs can use Chapter 1 and Chapters 4-8. A course using commercial semicustom ASIC design tools may use Chapters 1-2 or Chapters 1-3 and then skip to Chapter 9 if you use schematic entry, Chapter 10 (if you use VHDL), or Chapter 11 (if you use Verilog) together with Chapter 12. All classes can use Chapters 13 and 14. FPGA-based classes may skim Chapters 15-17, but classes in semicustom design should cover these chapters. The chapter dependencies-Y (X) means Chapter Y depends on X-are approximately: 1, 2(1), 3(2), 4(2), 5(4), 6(5), 7(6), 8(7), 9(2), 10(2), 11(2), 12(10 or 11), 13(2), 14(13), 15(2), 16(15), 17(16).

I used the following references to help me with the orthography of complex terms, style, and punctuation while writing: Merriam-Webster's Collegiate Dictionary, 10th edition, 1996, Springfield, MA: Merriam-Webster, ISBN 0-87779-709-9, PE1628.M36; The Chicago Manual of Style, 14th edition, Chicago: University of Chicago Press, 1993, ISBN 0-226-10389-7, Z253.U69; and Merriam-Webster's Standard American Style Manual, 1985, Springfield, MA: Merriam-Webster, ISBN 0-87779-133-3, PN147.W36. A particularly helpful book on technical writing is BUGS in Writing by Lyn DuprE, 1995, Reading, MA: Addison-Wesley, ISBN 0-201-60019-6, PE1408.D85 (this book grew from Lyn DuprE's unpublished work, Style SomeX, which I used).

The bibliography at the end of each chapter provides alternative sources if you cannot find what you are looking for. I have included the International Standard Book Number (ISBN) and Library of Congress (LOC) Call Number for books, and the International Standard Serial Number (ISSN) for journals (see the LOC information system, LOCIS, at loc.gov). I did not include references to material that I could not find myself (except where I have noted in the case of new or as yet unpublished books). The electronic references given in this text have (a last) access date of 4/19/97 and omit enclosing if the reference does not include spaces.

I receive a tremendous level of support and cooperation from industry in my work. I thank the following for help with this project: Cynthia Benn and Lyn DuprE for editing; Helen Goldstein, Peter Gordon, Susan London-Payne, Tracy Russ, and Juliet Silveri, all at Addison-Wesley; Matt Bowditch and Kim Arney at Argosy; Richard Lyon, Don North, William Rivard, Glen Stone, the managers of the Newton group, and many others at Apple Computer who provided financial support; Apple for providing support in the form of software and computers; Bill Becker, Fern Forcier, Donna Isidro, Mike Kliment, Paul McLellan, Tom Schaefer, Al Stein, Rich Talburt, Bill Walker, and others at Compass Design Automation and VLSI Technology for providing the opportunity for me to work on this book over many years and allowing me to test material inside these companies and on lecture tours they sponsored; Chuck Seitz at Caltech; Joseph Cavallaro, Bernie Chern, Jerry Dillion, Mike Foster, and Paul Hulina at the NSF; the NSF for financial support with a Presidential Young Investigator Award; Jim Rowson and Doug Fairbairn; Constantine Anagnostopoulos, Pin Tschang and members of the ASIC design groups at Kodak for financial support; the disk-drive design group at Digital Equipment Corp. (Massachusetts), Hewlett-Packard, and Sun

Microsystems for financial support; Ms. MOSIS and all of the staff at MOSIS who each have helped me at one point or another by providing silicon, technical support, and documentation; Bob Brodersen, Roger Howe, Randy Katz, and Ed Lee of UC Berkeley for help while I was visiting UCB; James Plummer of Stanford, for providing me with access to the Terman Engineering Library as a visiting scholar, as well as Abbas El Gamal and Paul Losleben, also at Stanford, for help on several occasions; Don Bouldin at University of Tennessee; Krzysztof Kozminski at MCNC for providing Uncle layout software; Gershon Kedem at Duke University for the public domain tools his group has written; Sue Drouin, Jose De Castro, and others at Mentor Graphics Corporation in Oregon for providing documentation and tools; Vahan Kasardjhan, Gail Grego, Michele Warthen, Steve Gardner, and others at the University Program at Cadence Design Automation in San Jose who helped with tools, documentation, and support; Karen Dorrington and the Cadence group in Massachusetts; Andy Haines, Tom Koppin, Sherri Mieth, Velma Miller, Robert Nales

From the Back Cover

This comprehensive book on application-specific integrated circuits (ASICs) describes the latest methods in VLSI-systems design. ASIC design, using commercial tools and pre-designed cell libraries, is the fastest, most cost-effective, and least error-prone method of IC design. As a consequence, ASICs and ASIC-design methods have become increasingly popular in industry for a wide range of applications.

The book covers both semicustom and programmable ASIC types. After describing the fundamentals of digital logic design and the physical features of each ASIC type, the book turns to ASIC logic design - design entry, logic synthesis, simulation, and test - and then to physical design - partitioning, floorplanning, placement, and routing. You will find here, in practical well-explained detail, everything you need to know to understand the design of an ASIC, and everything you must do to begin and to complete your own design.

Features

- Broad coverage includes, in one information-packed volume, cell-based ICs, gate arrays, field-programmable gate arrays (FPGAs), and complex programmable logic devices (PLDs).
- Examples throughout the book have been checked with a wide range of commercial tools to ensure their accuracy and utility.
- Separate chapters and appendixes on both Verilog and VHDL, including material from IEEE standards, serve as a complete reference for high-level, ASIC-design entry.

As in other landmark VLSI books published by Addison-Wesley - from Mead and Conway to Weste and Eshraghian - the author's teaching expertise and industry experience illuminate the presentation of useful design methods. Any engineer, manager, or student who is working with ASICs in a design project, or who is simply interested in knowing more about the different ASIC types and design styles, will find this book to be an invaluable resource, reference, and guide.

0201500221B04062001

About the Author

About Michael Smith

Michael Smith is both an experienced ASIC designer and a creative educator, with support from the National Science Foundation, and an array of Silicon Valley companies, including Viewlogic, VLSI Technology, Compass Design Automation, Xilinx, and Actel. Smith holds a B.A. from Cambridge University in the U.K. and a Ph.D. from Stanford. He is a recipient of the

NSF Presidential Young Investigator Award.

0201500221AB04062001

Users Review

From reader reviews:

Janet Smith:

Hey guys, do you desire to find a new book to learn? May be the book with the concept Application-Specific Integrated Circuits suitable to you? Often the book was written by famous writer in this era. The actual book untitled Application-Specific Integrated Circuits is the main of several books that everyone read now. This particular book was inspired a lot of people in the world. When you read this publication you will enter the new way of measuring that you ever know before. The author explained their thought in the simple way, and so all of people can easily know the core of this publication. This book will give you a lot of information about this world now. In order to see the represented of the world in this book.

James Reed:

Do you have something that you want such as book? The e-book lovers usually prefer to choose book like comic, limited story and the biggest some may be novel. Now, why not trying Application-Specific Integrated Circuits that give your enjoyment preference will be satisfied by reading this book. Reading addiction all over the world can be said as the opportunity for people to know world far better than how they react to the world. It can't be claimed constantly that reading routine only for the geeky individual but for all of you who wants to possibly be success person. So, for every you who want to start reading as your good habit, you can pick Application-Specific Integrated Circuits become your current starter.

Anna Rangel:

You can spend your free time to study this book this guide. This Application-Specific Integrated Circuits is simple bringing you can read it in the playground, in the beach, train along with soon. If you did not get much space to bring often the printed book, you can buy often the e-book. It is make you much easier to read it. You can save the book in your smart phone. And so there are a lot of benefits that you will get when you buy this book.

Vanessa Gilliam:

You can obtain this Application-Specific Integrated Circuits by check out the bookstore or Mall. Only viewing or reviewing it may be your solve problem if you get difficulties on your knowledge. Kinds of this e-book are various. Not only by simply written or printed but also can

you enjoy this book by simply e-book. In the modern era just like now, you just looking by your local mobile phone and searching what their problem. Right now, choose your own personal ways to get more information about your book. It is most important to arrange yourself to make your knowledge are still revise. Let's try to choose suitable ways for you.

**Download and Read Online Application-Specific Integrated Circuits By Michael John Sebastian Smith
#ZGAR43H8JXQ**

Read Application-Specific Integrated Circuits By Michael John Sebastian Smith for online ebook

Application-Specific Integrated Circuits By Michael John Sebastian Smith Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Application-Specific Integrated Circuits By Michael John Sebastian Smith books to read online.

Online Application-Specific Integrated Circuits By Michael John Sebastian Smith ebook PDF download

Application-Specific Integrated Circuits By Michael John Sebastian Smith Doc

Application-Specific Integrated Circuits By Michael John Sebastian Smith Mobipocket

Application-Specific Integrated Circuits By Michael John Sebastian Smith EPub

ZGAR43H8JXQ: Application-Specific Integrated Circuits By Michael John Sebastian Smith